Colin - On Fri, Nov 16, 2012 at 02:56:04PM +0400, Solar Designer wrote: > I ended up replacing the X array with two pointers, X and Y, which point > to Bin and Bout array elements. This avoids having to save a copy of X. I revised this some further. The patch is attached. The source file is now smaller than in my previous revisions - it is now almost the same size as original in scrypt-1.1.6. I think I'll leave this at that (and proceed to try out other changes that are not code optimizations). Please consider applying this patch. Thanks, Alexander
--- escrypt-1/crypto_scrypt-sse.c 2010-01-16 20:48:20 +0000 +++ escrypt-19/crypto_scrypt-sse.c 2012-11-17 03:16:15 +0000 @@ -1,5 +1,6 @@ /*- * Copyright 2009 Colin Percival + * Copyright 2012 Alexander Peslyak * All rights reserved. * * Redistribution and use in source and binary forms, with or without @@ -32,6 +33,10 @@ #include <sys/mman.h> #include <emmintrin.h> +#ifdef __XOP__ +#include <x86intrin.h> +#endif + #include <errno.h> #include <stdint.h> #include <stdlib.h> @@ -42,138 +47,134 @@ #include "crypto_scrypt.h" -static void blkcpy(void *, void *, size_t); -static void blkxor(void *, void *, size_t); -static void salsa20_8(__m128i *); -static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t); -static uint64_t integerify(void *, size_t); -static void smix(uint8_t *, size_t, uint64_t, void *, void *); - -static void -blkcpy(void * dest, void * src, size_t len) -{ - __m128i * D = dest; - __m128i * S = src; - size_t L = len / 16; - size_t i; - - for (i = 0; i < L; i++) - D[i] = S[i]; -} +#ifdef __XOP__ +#define XRA(out, in1, in2, s) \ + out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s)); +#else +#define XRA(out, in1, in2, s) \ + { \ + __m128i T = _mm_add_epi32(in1, in2); \ + out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \ + out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \ + } +#endif -static void -blkxor(void * dest, void * src, size_t len) -{ - __m128i * D = dest; - __m128i * S = src; - size_t L = len / 16; - size_t i; +#define SALSA20_2ROUNDS \ + /* Operate on "columns". */ \ + XRA(X1, X0, X3, 7); \ + XRA(X2, X1, X0, 9); \ + XRA(X3, X2, X1, 13); \ + XRA(X0, X3, X2, 18); \ +\ + /* Rearrange data. */ \ + X1 = _mm_shuffle_epi32(X1, 0x93); \ + X2 = _mm_shuffle_epi32(X2, 0x4E); \ + X3 = _mm_shuffle_epi32(X3, 0x39); \ +\ + /* Operate on "rows". */ \ + XRA(X3, X0, X1, 7); \ + XRA(X2, X3, X0, 9); \ + XRA(X1, X2, X3, 13); \ + XRA(X0, X1, X2, 18); \ +\ + /* Rearrange data. */ \ + X1 = _mm_shuffle_epi32(X1, 0x39); \ + X2 = _mm_shuffle_epi32(X2, 0x4E); \ + X3 = _mm_shuffle_epi32(X3, 0x93); - for (i = 0; i < L; i++) - D[i] = _mm_xor_si128(D[i], S[i]); -} +/** + * Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ in. + */ +#define SALSA20_8_XOR(in, out) \ + { \ + __m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \ + __m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \ + __m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \ + __m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \ + SALSA20_2ROUNDS; \ + SALSA20_2ROUNDS; \ + SALSA20_2ROUNDS; \ + SALSA20_2ROUNDS; \ + (out)[0] = X0 = _mm_add_epi32(X0, Y0); \ + (out)[1] = X1 = _mm_add_epi32(X1, Y1); \ + (out)[2] = X2 = _mm_add_epi32(X2, Y2); \ + (out)[3] = X3 = _mm_add_epi32(X3, Y3); \ + } /** - * salsa20_8(B): - * Apply the salsa20/8 core to the provided block. + * blockmix_salsa8(Bin, Bout, r): + * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r + * bytes in length; the output Bout must also be the same size. */ -static void -salsa20_8(__m128i B[4]) +static inline void +blockmix_salsa8(__m128i * Bin, __m128i * Bout, size_t r) { __m128i X0, X1, X2, X3; - __m128i T; size_t i; - X0 = B[0]; - X1 = B[1]; - X2 = B[2]; - X3 = B[3]; - - for (i = 0; i < 8; i += 2) { - /* Operate on "columns". */ - T = _mm_add_epi32(X0, X3); - X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7)); - X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25)); - T = _mm_add_epi32(X1, X0); - X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); - X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); - T = _mm_add_epi32(X2, X1); - X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13)); - X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19)); - T = _mm_add_epi32(X3, X2); - X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); - X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); - - /* Rearrange data. */ - X1 = _mm_shuffle_epi32(X1, 0x93); - X2 = _mm_shuffle_epi32(X2, 0x4E); - X3 = _mm_shuffle_epi32(X3, 0x39); - - /* Operate on "rows". */ - T = _mm_add_epi32(X0, X1); - X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7)); - X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25)); - T = _mm_add_epi32(X3, X0); - X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); - X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); - T = _mm_add_epi32(X2, X3); - X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13)); - X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19)); - T = _mm_add_epi32(X1, X2); - X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); - X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); - - /* Rearrange data. */ - X1 = _mm_shuffle_epi32(X1, 0x39); - X2 = _mm_shuffle_epi32(X2, 0x4E); - X3 = _mm_shuffle_epi32(X3, 0x93); - } - - B[0] = _mm_add_epi32(B[0], X0); - B[1] = _mm_add_epi32(B[1], X1); - B[2] = _mm_add_epi32(B[2], X2); - B[3] = _mm_add_epi32(B[3], X3); + /* 1: X <-- B_{2r - 1} */ + X0 = Bin[8 * r - 4]; + X1 = Bin[8 * r - 3]; + X2 = Bin[8 * r - 2]; + X3 = Bin[8 * r - 1]; + + /* 2: for i = 0 to 2r - 1 do */ + for (i = 0; i < r; i++) { + /* 3: X <-- H(X \xor B_i) */ + /* 4: Y_i <-- X */ + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ + SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4]) + + /* 3: X <-- H(X \xor B_i) */ + /* 4: Y_i <-- X */ + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ + SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4]) + } } -/** - * blockmix_salsa8(Bin, Bout, X, r): - * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r - * bytes in length; the output Bout must also be the same size. The - * temporary space X must be 64 bytes. - */ -static void -blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r) +static inline void +blockmix_salsa8_xor(__m128i * Bin1, __m128i * Bin2, __m128i * Bout, size_t r) { + __m128i X0, X1, X2, X3; size_t i; /* 1: X <-- B_{2r - 1} */ - blkcpy(X, &Bin[8 * r - 4], 64); + X0 = _mm_xor_si128(Bin1[8 * r - 4], Bin2[8 * r - 4]); + X1 = _mm_xor_si128(Bin1[8 * r - 3], Bin2[8 * r - 3]); + X2 = _mm_xor_si128(Bin1[8 * r - 2], Bin2[8 * r - 2]); + X3 = _mm_xor_si128(Bin1[8 * r - 1], Bin2[8 * r - 1]); /* 2: for i = 0 to 2r - 1 do */ for (i = 0; i < r; i++) { /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 8], 64); - salsa20_8(X); - /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[i * 4], X, 64); + X0 = _mm_xor_si128(X0, Bin1[i * 8]); + X1 = _mm_xor_si128(X1, Bin1[i * 8 + 1]); + X2 = _mm_xor_si128(X2, Bin1[i * 8 + 2]); + X3 = _mm_xor_si128(X3, Bin1[i * 8 + 3]); + SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4]) /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 8 + 4], 64); - salsa20_8(X); - /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[(r + i) * 4], X, 64); + X0 = _mm_xor_si128(X0, Bin1[i * 8 + 4]); + X1 = _mm_xor_si128(X1, Bin1[i * 8 + 5]); + X2 = _mm_xor_si128(X2, Bin1[i * 8 + 6]); + X3 = _mm_xor_si128(X3, Bin1[i * 8 + 7]); + SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4]) } } +#undef XRA +#undef SALSA20_2ROUNDS +#undef SALSA20_8_XOR + /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ -static uint64_t +static inline uint64_t integerify(void * B, size_t r) { uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); @@ -192,14 +193,13 @@ integerify(void * B, size_t r) static void smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) { - __m128i * X = XY; - __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r); - __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r); - uint32_t * X32 = (void *)X; + __m128i * X = V, * Y; + uint32_t * X32 = V; uint64_t i, j; size_t k; /* 1: X <-- B */ + /* 3: V_i <-- X */ for (k = 0; k < 2 * r; k++) { for (i = 0; i < 16; i++) { X32[k * 16 + i] = @@ -208,36 +208,48 @@ smix(uint8_t * B, size_t r, uint64_t N, } /* 2: for i = 0 to N - 1 do */ - for (i = 0; i < N; i += 2) { - /* 3: V_i <-- X */ - blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); - + for (i = 1; i < N - 1; i += 2) { /* 4: X <-- H(X) */ - blockmix_salsa8(X, Y, Z, r); - /* 3: V_i <-- X */ - blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), - Y, 128 * r); + Y = (void *)((uintptr_t)(V) + i * 128 * r); + blockmix_salsa8(X, Y, r); /* 4: X <-- H(X) */ - blockmix_salsa8(Y, X, Z, r); + /* 3: V_i <-- X */ + X = (void *)((uintptr_t)(V) + (i + 1) * 128 * r); + blockmix_salsa8(Y, X, r); } + /* 4: X <-- H(X) */ + /* 3: V_i <-- X */ + Y = (void *)((uintptr_t)(V) + i * 128 * r); + blockmix_salsa8(X, Y, r); + + /* 4: X <-- H(X) */ + /* 3: V_i <-- X */ + X = XY; + blockmix_salsa8(Y, X, r); + + X32 = XY; + Y = (void *)((uintptr_t)(XY) + 128 * r); + /* 6: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { + __m128i * V_j; + /* 7: j <-- Integerify(X) mod N */ j = integerify(X, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ - blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); - blockmix_salsa8(X, Y, Z, r); + V_j = (void *)((uintptr_t)(V) + j * 128 * r); + blockmix_salsa8_xor(X, V_j, Y, r); /* 7: j <-- Integerify(X) mod N */ j = integerify(Y, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ - blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); - blockmix_salsa8(Y, X, Z, r); + V_j = (void *)((uintptr_t)(V) + j * 128 * r); + blockmix_salsa8_xor(Y, V_j, X, r); } /* 10: B' <-- X */ @@ -298,7 +310,7 @@ crypto_scrypt(const uint8_t * passwd, si if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) goto err0; B = (uint8_t *)(B0); - if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) + if ((errno = posix_memalign(&XY0, 64, 256 * r)) != 0) goto err1; XY = (uint32_t *)(XY0); #ifndef MAP_ANON @@ -310,7 +322,7 @@ crypto_scrypt(const uint8_t * passwd, si if ((B0 = malloc(128 * r * p + 63)) == NULL) goto err0; B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); - if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) + if ((XY0 = malloc(256 * r + 63)) == NULL) goto err1; XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); #ifndef MAP_ANON
Attachment:
escrypt-0.0.19.tar.gz
Description: Binary data